COMPUTER APPLICATION

CLASS X

SAMPLE PAPER

ATTEMPT ANY 4 PROGRAMS

FULL MARKS: 60

Program 1

Write a menu driven program to perform the following task:
a) Sum $=1+(1+2)+(1+2+3)+$ \qquad $+(1+2+3+$ \qquad $+n$)
b) Print the series: $1,2,4,7,11, \ldots . .$. n term

Program 2

Write a program to input a number and print whether the number is a special number or not.
(A number is said to be a special number, if the sum of the factorial of the digits of the number is same as the original number).
Example: 145 is a special number, because $I!+4!+5!=1+24+120=145$
(Where! stands for factorial of the number and the factorial value of a number is the product of all integers from 1 to that number, example $5!=1 * 2 * 3 * 4 * 5=$ 120).

Program 3

Write a menu driven program to accept a number from the user and check whether it is a Palindrome or a Perfect number.
(a) Palindrome number: (A number is a Palindrome which when read in reverse order is same as in the right order)
Example: 11, 101, 151 etc.
(b) Perfect number: (A number is called Perfect if it is equal to the sum of its factors other than the number itself.)
Example: $6=1+2+3$

Program 4

Write a program to input a number. Display the product of the successors of even digits of the number entered by user.
Input: 2745
Output: 15
[Hint: The even digits are: 2 and 4
The product of successor of even digits is: $3 * 5=15$]

Program 5

Write a program to convert a decimal number to its binary equivalent using Scanner Class. Sample input: 23

Output: 10111

Program 6

Write a program to input a number and check whether it is a happy number or not. If you iterate the process of summing the squares of the decimal digits of a number and if this process terminates in 1 , then the original number is called a happy number.

For example $31->3^{\wedge} 2+1^{\wedge} 1=10->1^{\wedge} 2+0^{\wedge} 2=1$

Program 7

A Dudeney number is a positive integer that is a perfect cube such that the sum of its digits is equal to the cube root of the number. Write a program to input a number and check and print whether it is a Dudeney number or not.

Example:
Consider the number 512.

Sum of digits $=5+1+2=8$
Cube root of $512=8$
As Sum of digits = Cube root of Number hence 512 is a Dudeney number.

